Using sources

ANU Academic Skills
• Why do you need to incorporate sources in your writing?
• How do you do it with academic integrity?
argument evidence
Ways to incorporate sources into your writing

**Quote**
- Copy others’ words exactly
- Use sparingly when you want to highlight a key idea or key researcher/scholar

**Paraphrase**
- Explain someone’s idea in detail using your own words
- Use when you need to provide specific detail/evidence of an author’s argument

**Summarise**
- Succinctly explain someone’s argument using your own words
- Use to capture the essence of an argument by so focusing on the main ideas only

**Synthesize**
- Combine multiple sources that have a similar argument
- Use to summarise multiples sources or to strengthen your argument
Quote selectively...

• When the original text is a well written, key point that would be difficult to reword

• Quotes must:
  • match the original exactly
  • be formatted correctly
  • include a citation + page number
  • have some of your own words before and/or after to explain what the quote means in the context of your answer
Research has shown that it is possible to “avoid processor idle time by allowing the processors to continue to make progress even if not all progress made by other processors has been communicated to them” (Avron, Druinsky & Gupta 2015, p. 1).
Paraphrase vs summary

- Both require rewriting someone else's idea(s) in your own words

<table>
<thead>
<tr>
<th>Paraphrase</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Usually one idea from the text</td>
<td>• Usually taken from a much longer piece of text</td>
</tr>
<tr>
<td>• Usually around the same length as the original</td>
<td>• Much shorter than the original text</td>
</tr>
<tr>
<td>• Uses some of the important terminology but wording and order are changed.</td>
<td>• Covers the main point of what the original author is saying / arguing.</td>
</tr>
</tbody>
</table>

- Paraphrasing is harder to do correctly!
Whilst asynchronous methods have been researched and compared for 50 years, there remains limited understanding of how to avoid processor idle time (Avron, Druinsky & Gupta 2015).
When summarising/paraphrasing...

• Use your notes

• Change
  • Structure
  • Wording

• What you include depends on the purpose of the task
Synthesis

• combine multiple sources to develop and strengthen your argument(s)
• demonstrate that you have read widely on the topic
• use and cite multiple sources
A large modern literature by economists and behavioural scientists has documented cross-sectional evidence for an approximately U-shaped path of happiness and well-being over the majority of the human lifespan (Warr, 1992; Clark & Oswald, 1994).
Putting it into practice

Practice question:

Can blockchain provide an opportunity for a more secure and private internet?

Analysing the question:

• How secure is blockchain?
• What mechanisms does it have to ensure security?
• What possible threats does it pose?
In the case of public BT, transactions may appear private because they are not directly tied to a user identity. However, they are recorded in a public ledger. Thus, transaction patterns can be observed, and it is possible to link a user identity to an address. A major contribution of BT is the degree of transparency and decentralization that it provides along with an adequate level of security and privacy that was previously deemed impossible. However, no solution for transaction privacy is perfect.

Key points:
• BT transactions not directly linked to user but are kept in a public ledger
• Patterns in user transactions can be detected and this can link to a particular user
• BT provides transparency and decentralization
• BT appears secure but no solution is perfect

Good paraphrasing?

Original:
In the case of public BT, transactions may appear private because they are not directly tied to a user identity. However, they are recorded in a public ledger. Thus, transaction patterns can be observed, and it is possible to link a user identity to an address. A major contribution of BT is the degree of transparency and decentralization that it provides along with an adequate level of security and privacy that was previously deemed impossible. However, no solution for transaction privacy is perfect.

BT systems have some major privacy limitations because transaction patterns can be observed. This will link a user identity to an address (Hasanova et al. 2019).

Hasanover et al. (2019, p. 25) argue that although BT transactions appear private, "transaction patterns can be seen, and it is possible to match a user identity to an address."
Good paraphrasing?

**Original:**
In the case of public BT, transactions may appear private because they are not directly tied to a user identity. However, they are recorded in a public ledger. Thus, transaction patterns can be observed, and it is possible to link a user identity to an address. A major contribution of BT is the degree of transparency and decentralization that it provides along with an adequate level of security and privacy that was previously deemed impossible. However, no solution for transaction privacy is perfect.

According to Hasanover et al. (2019, p. 25) whilst BT technologies promise privacy and security, it is possible to trace a user by observing the pattern of transactions they make.

In the case of public BT, transactions may appear private because they are not directly tied to a user identity. However, they are recorded in a public ledger. Thus, transaction patterns can be observed, and it is possible to link a user identity to an address. A major contribution of BT is the degree of transparency and decentralization that it provides along with an adequate level of security and privacy that was previously deemed impossible.

**Notes:**
- BT provides transparency and decentralization
- BT transactions not directly linked to user but are kept in a public ledger
- Patterns in user transactions can be detected and this can link to a particular user
- BT appears secure but no solution is perfect

**Paraphrased sentence:**
According to Hasanover et al. (2019, p. 25) whilst BT technologies promise privacy and security, it is possible to trace a user by observing the pattern of transactions they make.
Check your paraphrase

• Have you conveyed the same meaning?
• Used different words?
• Changed the original sentence structure?
• Provided a citation?
Read
• Have a purpose/question

Take notes
• Be active and critically engage

Write
• Change terms and order
Activity – taking notes

*Can blockchain provide an opportunity for a more secure internet?*

1. On the next slide, read the paragraphs in Bacina and Kassra (2017, p. 79)

2. In pairs/groups, come up with one point per paragraph.
Digital tokens are not new and have been in use since the early days of the internet. A simple example of a digital token many people have come across is when a user has lost their password and requests a password reset. The user receives an email with a link back to the website to set a new password. That link almost always has a fairly long list of characters after the website address - that string of characters is actually a token. In this example, the website recognises the token as a single use authorisation to permit the user to reset their password. The token is a single use digital key.

Since Bitcoin was invented, tokens have taken on a whole new role. Tokens utilising blockchain technology are not single use and have unique properties. When a user buys a token (such as a Bitcoin, Ether or other token), what is really purchased is a private key which gives control of a ledger entry on the relevant blockchain relating to the token purchased.

The private key is a long string of numbers and letters. It is functionally similar to a password, and can be used to transfer the token(s) it controls to other persons (usually sending the token(s) to someone’s digital wallet). But there is a critical difference: if the holder of a password loses that password, they can usually rely on a central authority (like the operators of a website) to provide a password recovery system. A private key using blockchain technology, however, can never be reset. If the private key is lost, then the (former) holder of that private key can never transfer the tokens which the private key controlled. In order words, the tokens are like cash in that they can be lost (or stolen if the private key is copied or disclosed).
Activity – making a summary

*Can blockchain provide an opportunity for a more secure internet?*

In your pairs/groups, put your three ideas together and write a summary in your own words.
Sample sentence starters

• Bacina and Kassra (2017, p. 79) argue that ...
• Bacina and Kassra (2017, p. 79) describe ...
• These authors observe that ... Bacina and Kassra (2017, p. 79)
• For example, Bacina and Kassra (2017, p. 79) consider ...
• Bacina and Kassra (2017, p. 79) show ...
Sample paraphrase

Bassina and Kasra (2017, p. 79) highlight a key flaw in the security blockchain technology where privacy keys can be lost, just like real currency.
Good summaries, paraphrases and syntheses

• Pull together (condense and synthesise) the text’s main ideas
• Show their relevance/connection for your task
• Make it clear to readers where you stand on the specific issues.
Stance - how you convey your analysis and view

Voice - how you distinguish your ideas from others’

Your choice of words, phrases and how you put them together creates your voice and stance.
Finding your voice

• How does the reader know when you are paraphrasing and when you are making your own comments?

• How do you indicate your positive or negative appraisal of someone else’s research and ideas?

• How do you show the extent of your commitment to particular ideas?
Adjectives, verbs, adverbs and nouns

• “Evans’ rigorous approach highlights the limitations...”
• “To remedy this drawback, preprogramming of...”
• “This is further supported by the observation that
• “Edson et al. (1993) showed that...”
• “Baumgartner and Bagozzi (1995) strongly recommend the use of...”
• “The thorough research by Preston et al. (2018) and Carr (2016) illustrates...”
• “Although West’s (2017) speculative proposition has its merits...”
Contrasting or qualifying ideas

• “Goyder’s (2017) position, however, contrasts with...”
• “There is good reason, however, to question the results of West’s (2017) research.”
• “Although there is much to learn from Gatton et al. (2016) analysis, it is important to acknowledge...”
Decide what point you wish to make about the text

Make your argument clear

• Can the reader easily identify when you are paraphrasing and when you are making your own comments?
• Use verbs and adjectives to show your analysis (positive or negative)
• Use language to express your stance
Blockchain technology offers opportunities for increasing security and privacy on the internet but there are some serious limitations. Blockchain technology has opened up a potential way of conducting transactions where less personal information needs to be shared (Bauerle nd). Researchers such as Zyskind, Nathan and Pentland (2015) suggest that by removing third parties from the transaction, blockchain provides an opportunity for users to have better control and ownership over their own data. However, critics caution that there are some serious challenges in terms of accountability when machines control transactions (Hutton 2017). Moreover, there are a number of ways in which the security of blockchain transactions can be compromised such as code-based attacks, double spending and dust attacks (Bradbury 2013). Hasanover et al. (2019, p. 25), point out “transaction patterns can be observed, and it is possible to link a user identity to an address”. Additionally, Bassina and Kasra (2017) highlight a key flaw in the security blockchain technology where privacy keys can be lost, just like real currency. It is early days but analysis so far is indicating that there may be a number of issues that need to be considered before there is wider adoption of blockchain technology.
In computer science, various papers around blockchains have been published in recent years and have, e.g., analyzed consensus algorithms (e.g., Eyal and Sirer 2014) or proposed novel concepts to tackle issues regarding privacy of smart contracts (e.g., Kosba et al. 2016). However, besides a lot of industry whitepapers on blockchains, academic papers in information systems around blockchain currently primarily focus on crypto-currencies. Besides significant benefits, there are also drawbacks and potential risks which are discussed in this stream of literature. Barber et al. (2012) highlight several weaknesses of Bitcoin, such as theft or loss of Bitcoins (malware attacks, accidental loss), scalability issues (e.g., delayed transaction confirmation, data retention, and communication failures), and structural problems (e.g., deflationary spiral). At the same time, Barber et al. (2012) suggest solutions for improving the existing Bitcoin technology. For instance, a “fair exchange protocol” might improve the user’s anonymity. Privacy implications of Bitcoin have also been discussed by other authors (e.g., Androulaki et al. 2013; Bonneau et al. 2014; Miers et al. 2013). In the current Bitcoin world, privacy can only be protected by using pseudonyms. As an extension to Bitcoin, Miers et al. (2013) therefore developed Zerocoin, which allows for trading cryptocurrencies completely anonymously. In 2016, Zcash, the successor of Zerocoin was launched.
In computer science, various papers around blockchains have been published in recent years and have, e.g., analyzed consensus algorithms (e.g., Eyal and Sirer 2014) or proposed novel concepts to tackle issues regarding privacy of smart contracts (e.g., Kosba et al. 2016). However, besides a lot of industry whitepapers on blockchains, academic papers in information systems around blockchain currently primarily focus on crypto-currencies. Besides significant benefits, there are also drawbacks and potential risks which are discussed in this stream of literature. Barber et al. (2012) highlight several weaknesses of Bitcoin, such as theft or loss of Bitcoins (malware attacks, accidental loss), scalability issues (e.g., delayed transaction confirmation, data retention, and communication failures), and structural problems (e.g., deflationary spiral). At the same time, Barber et al. (2012) suggest solutions for improving the existing Bitcoin technology. For instance, a “fair exchange protocol” might improve the user’s anonymity. Privacy implications of Bitcoin have also been discussed by other authors (e.g., Androulaki et al. 2013; Bonneau et al. 2014; Miers et al. 2013). In the current Bitcoin world, privacy can only be protected by using pseudonyms. As an extension to Bitcoin, Miers et al. (2013) therefore developed Zerocoin, which allows for trading cryptocurrencies completely anonymously. In 2016, Zcash, the successor of Zerocoin was launched.
Overall similarity percentage. It is meaningless by itself – you need to check each match.

Click here to swap views between originality report and markers comments.

Shows the matching text in the original source.

Colour-coded detail about sources that match.
BT systems have some major privacy limitations because transaction patterns can be observed. This will link a user identity to an address (Hasanover et al. 2019).

Hasanover et al. (2019, p. 25) argue that although BT transactions appear private, “transaction patterns can be seen, and it is possible to match a user identity to an address”.

According to Hasanover et al. (2019, p. 25) whilst BT technologies promise privacy and security, it is possible to trace a user by observing the pattern of transactions they make.
Blockchain technology offers opportunities for increasing security and privacy on the internet but there are some serious limitations. Blockchain technology has opened up a potential way of conducting transactions where less personal information needs to be shared (Bauerle nd). Researchers such as Zyskind, Nathan and Pentland (2015) suggest that by removing third parties from the transaction, blockchain provides an opportunity for users to have better control and ownership over their own data. However, critics caution that there are some serious challenges in terms of accountability when machines control transactions (Hutton 2017). Moreover, there are a number of ways in which the security of blockchain transactions can be compromised such as code-based attacks, double spending and dust attacks (Bradbury 2013). Hasanover et al. (2019, p. 25), point out “transaction patterns can be observed, and it is possible to link a user identity to an address”. Additionally, Bassina and Kasra (2017) highlight a key flaw in the security blockchain technology where privacy keys can be lost, just like real currency. It is early days but analysis so far is indicating that there may be a number of issues that need to be considered before there is wider adoption of blockchain technology.
Remember to:

• Summarise correctly
• Paraphrase when needed
• Synthesise shared ideas
• Quote only if really needed
• Use referencing correctly
ANU Academic Skills
Helping you to achieve academic success!

Peer Writers
- Ask us a quick question
- 10-15 min drop-ins
- Face-to-face or via Zoom
- During semester, Mon-Fri 11am to 1pm

Writing Coaches
- Check you're on the right track
- 30 min booked appointments
- Face-to-face or via Zoom
- Written feedback also offered
- During semester, Mon - Fri 10am to 4pm

Learning Advisers
- Excel in your research writing
- 45 min booked appointments
- Face-to-face or via Zoom
- Written feedback also offered
- Throughout the year, Mon - Fri 10am to 5pm
ANU Academic Skills

Let’s Speak English!

Join fun conversation groups, make new friends, and practice your English

Monday to Friday 1-2pm via Zoom (Mon, Wed, Thurs, Fri) or in-person in MRTC5.02 (Tues)

To find out more, visit anu.edu.au/LetsSpeakEnglish
References
